Sewage Tank Repair St Leo

Septic tanks are a great solution for remote or urban property owners who either cannot or do not want to be part of a municipal sewage system. A septic system is connected directly to the pipes of the residence or business and serves as an immediate filter and containment unit for water-bound domestic waste. There are certain risks related to the installation and maintenance of a septic tank; such risks have resulted in rules that need to be followed to protect the environment and property especially with the regular removal of the contents of the tank by a vacuum truck.

Frequency

Depending on the size of the unit and the household, a tank must be emptied every three to five years. This is necessary not only because of space limitations but also because the tank needs to be inspected with some regularity to check for cracks, leaks and blockages. Other reasons are as follows:

    • Emergencies – Pumping can also become necessary in cases of emergency. Sewage backup and drain clogging may occur due to blockages which need to be cleared immediately to keep the problem from escalating. Flooding can cause similar problems.

 

    • Precautionary Measure – Emptying the primary container can also be a precautionary measure when there are many household members; parties with many guests; or other circumstances where many people would be using the toilets.

 

    • Odors – Sometimes tanks are suctioned due to permeating sewer odors escaping from the system as that could be a symptom of leaking gas needing to be repaired separately. Evidence of septic failure must be attended to immediately by a professional repair company.

 

  • Selling Property – It is also customary to pump out the septic system before selling property.

Septic tanks serve a very useful purpose for many households. As long as properly maintained by regular pumping, cleaning and inspections, they should correctly function under all conditions and for a long service life. Hopefully this information will be helpful in knowing how a septic tank is cleaned!

Follow these safety tips given below when inspecting your septic system:

1. Septic tank lid
Make sure that the access port of your tank is covered with a solid lid. Make sure that the lid is strong enough. Kids should not be able to open it. If you have no idea as to how to install the system, you can call a professional for help. The company will be more than happy to help with the inspection.

2. The tank opening
You should never lean over the septic tank opening. The reason is that the gasses that come out of the tank may knock you out. You may also fall in the tank, which may prove fatal.

3. Driving Over The septic system
Driving heavy machine on the ground where the tank system is buried is not a good idea. Actually, you may have to bear heavy costs in order to get the broken pipes repaired. So, make sure you don’t drive heavy equipment or machinery on the ground where you buried the tank system.

Contact Info:
Name: Billy Fowler
Email: info@asapadvancedseptic.com
Organization: ASAP Advanced Septic & Drainage, Inc.
Address: 5011 E Busch Blvd, Tampa, FL 33617
Phone: (813) 986-6070

Septic Drain Field Problems and Repair: What to Look for and How to Get the Help You Need

Drain Field Inspection Contractor

Septic systems fulfill a crucial function for many homes and businesses, especially in rural areas, though many people are clueless as to how they work. While septic tanks are usually low-maintenance systems, they can become extremely tricky and expensive if something goes wrong. A basic knowledge is important to anyone wishing to avoid future problems with their septic tanks.

What is a septic system?

Septic systems are small-scale sewage treatment systems that are used in areas not connected to a sewage system operated by the government or a private company. They are often used by homes and farms in rural areas where it is too costly to connect to faraway sewage mains. Septic systems work by pumping wastewater from bathrooms, kitchens and laundry facilities into effluent tanks, which process the waste and then disperse it onto a septic drain field.

What is a septic tank?

What happens to waste that doesn't decompose?

Some of the contents of the effluent tank will not decompose; therefore it is important to empty the tank occasionally. If tanks are not pumped the septic tank can fill with undecomposed substances that will be pumped into the drainage field. This can result in environmental problems as well as expensive repairs. How often the tank needs to be pumped clean varies depending on its size, the number of people using it and the outside temperature. Because there are so many variables, there is no rule of thumb for how often the tanks should be pumped: some need it every few years while other can go between 10 and 20 years without pumping. Have a professional inspect your tank to let you know when it needs to be pumped.

 

Clean Your Septic Tank Before the Party!

Septic Draining Company

Where your waste goes after it gets flushed down the toilet isn't something that many of us think about very often, nor should it be. Thanks to technological advances in the last century, plumbing and public sanitation has become much more convenient, hygienic and precise. The vast majority of those of us who live in metropolitan areas have our home sewer lines tapped into the city sewer mains, which means that our waste travels to a public treatment plant to be processed. For homes and businesses that cannot tap into public sewer lines, however, using a septic tank is an option that provides similar results in a different manner.

They are large holding tanks for sewage, almost always located below ground. They are usually constructed of plastic, and are often able to contain many weeks worth of waste. A septic tank can generally allow for the permanent disposal of waste in one of three ways: by being pumped out on a regular basis, by having bacteria or chemicals applied that eats away the waste naturally, or be allowing the waste to be dispersed naturally into the ground through a leech field. In all of these cases, septic tanks usually require less maintenance than you would think after the initial installation is complete.

If you think that you might need to have a tank system installed at a home, business or constructions site, make sure that you research local contractors to see who offers the best prices and service. Thanks to modern technology, you shouldn't notice any discernible difference between being attached to a public sewer system and using a septic tank.

What Are Septic Tanks and How Do They Work?

Septic System Contractor Service

An aerobic treatment system or ATS, often called (incorrectly) an aerobic septic system, is a small scale sewage treatment system similar to a septic tank system, but which uses an aerobic process for digestion rather than just the anaerobic process used in septic systems. These systems are commonly found in rural areas where public sewers are not available, and may be used for a single residence or for a small group of homes.

Unlike the traditional septic system, the aerobic treatment system produces a high quality secondary effluent, which can be sterilized and used for surface irrigation. This allows much greater flexibility in the placement of the leach field, as well as cutting the required size of the leach field by as much as half.[1]

The ATS process generally consists of the following phases:[2]

The disinfecting stage is optional, and is used where a sterile effluent is required, such as cases where the effluent is distributed above ground. The disinfectant typically used is tablets of calcium hypochlorite, which are specially made for waste treatment systems.[3] The tablets are intended to break down quickly in sunlight. Stabilized forms of chlorine persist after the effluent is dispersed, and can kill plants in the leach field.

Since the ATS contains a living ecosystem of microbes to digest the waste products in the water, excessive amounts of items such as bleach or antibiotics can damage the ATS environment and reduce treatment effectiveness. Non-digestible items should also be avoided, as they will build up in the system and require more frequent sludge removal.[4]

Small scale aerobic systems generally use one of two designs, fixed-film systems, or continuous flow, suspended growth aerobic systems (CFSGAS). The pre-treatment and effluent handling are similar for both types of systems, and the difference lies in the aeration stage.[1]

Fixed film systems use a porous medium which provides a bed to support the biomass film that digests the waste material in the wastewater. Designs for fixed film systems vary widely, but fall into two basic categories (though some systems may combine both methods). The first is a system where the media is moved relative to the wastewater, alternately immersing the film and exposing it to air, while the second uses a stationary media, and varies the wastewater flow so the film is alternately submerged and exposed to air. In both cases, the biomass must be exposed to both wastewater and air for the aerobic digestion to occur. The film itself may be made of any suitable porous material, such as formed plastic or peat moss. Simple systems use stationary media, and rely on intermittent, gravity driven wastewater flow to provide periodic exposure to air and wastewater. A common moving media system is the rotating biological contactor (RBC), which uses disks rotating slowly on a horizontal shaft. Approximately 40 percent of the disks are submerged at any given time, and the shaft rotates at a rate of one or two revolutions per minute.[1]

CFSGAS systems, as the name implies, are designed to handle continuous flow, and do not provide a bed for a bacterial film, relying rather on bacteria suspended in the wastewater. The suspension and aeration are typically provided by an air pump, which pumps air through the aeration chamber, providing a constant stirring of the wastewater in addition to the oxygenation. A medium to promote fixed film bacterial growth may be added to some systems designed to handle higher than normal levels of biomass in the wastewater.[1]

Another increasingly common use of aerobic treatment is for the remediation of failing or failed anaerobic septic systems, by retrofitting an existing system with an aerobic feature. This class of product, known as aerobic remediation, is designed to remediate biologically failed and failing anaerobic distribution systems by significantly reducing the biochemical oxygen demand (BOD5) and total suspended solids (TSS) of the effluent. The reduction of the BOD5 and TSS reverses the developed bio-mat. Further, effluent with high dissolved oxygen and aerobic bacteria flow to the distribution component and digest the bio-mat.Doing so on single tank systems where solids do not have anywhere to settle, or there is no a clarifying area can do damage to the field lines as the solid matter is stirred up in the tank.

Composting toilets are designed to treat only toilet waste, rather than general residential waste water, and are typically used with water-free toilets rather than the flush toilets associated with the above types of aerobic treatment systems. These systems treat the waste as a moist solid, rather than in liquid suspension, and therefore separate urine from feces during treatment to maintain the correct moisture content in the system. An example of a composting toilet is the clivus multrum (Latin for 'inclined chamber'), which consists of an inclined chamber that separates urine and feces and a fan to provide positive ventilation and prevent odors from escaping through the toilet. Within the chamber, the urine and feces are independently broken down not only by aerobic bacteria, but also by fungi, arthropods, and earthworms. Treatment times are very long, with a minimum time between removals of solid waste of a year; during treatment the volume of the solid waste is decreased by 90 percent, with most being converted into water vapor and carbon dioxide. Pathogens are eliminated from the waste by the long durations in inhospitable conditions in the treatment chamber.[5]

The aeration stage and the disinfecting stage are the primary differences from a traditional septic system; in fact, an aerobic treatment system can be used as a secondary treatment for septic tank effluent.[1] These stages increase the initial cost of the aerobic system, and also the maintenance requirements over the passive septic system. Unlike many other biofilters, aerobic treatment systems require a constant supply of electricity to drive the air pump increasing overall system costs. The disinfectant tablets must be periodically replaced, as well as the electrical components (air compressor) and mechanical components (air diffusers). On the positive side, an aerobic system produces a higher quality effluent than a septic tank, and thus the leach field can be smaller than that of a conventional septic system, and the output can be discharged in areas too environmentally sensitive for septic system output. Some aerobic systems recycle the effluent through a sprinkler system, using it to water the lawn where regulations approve.

Since the effluent from an ATS is often discharged onto the surface of the leach field, the quality is very important. A typical ATS will, when operating correctly, produce an effluent with less than 30 mg/liter BOD5, 25 mg/L TSS, and 10,000 cfu/mL fecal coliform bacteria. This is clean enough that it cannot support a biomat or "slime" layer like a septic tank.[6]

ATS effluent is relatively odorless; a properly operating system will produce effluent that smells musty, but not like sewage. Aerobic treatment is so effective at reducing odors, that it is the preferred method for reducing odor from manure produced by farms.[7][8][9]

Aerobic treatment system

Drain Field Inspections

An aerobic treatment system or ATS, often called (incorrectly) an aerobic septic system, is a small scale sewage treatment system similar to a septic tank system, but which uses an aerobic process for digestion rather than just the anaerobic process used in septic systems. These systems are commonly found in rural areas where public sewers are not available, and may be used for a single residence or for a small group of homes.

Unlike the traditional septic system, the aerobic treatment system produces a high quality secondary effluent, which can be sterilized and used for surface irrigation. This allows much greater flexibility in the placement of the leach field, as well as cutting the required size of the leach field by as much as half.[1]

The ATS process generally consists of the following phases:[2]

The disinfecting stage is optional, and is used where a sterile effluent is required, such as cases where the effluent is distributed above ground. The disinfectant typically used is tablets of calcium hypochlorite, which are specially made for waste treatment systems.[3] The tablets are intended to break down quickly in sunlight. Stabilized forms of chlorine persist after the effluent is dispersed, and can kill plants in the leach field.

Since the ATS contains a living ecosystem of microbes to digest the waste products in the water, excessive amounts of items such as bleach or antibiotics can damage the ATS environment and reduce treatment effectiveness. Non-digestible items should also be avoided, as they will build up in the system and require more frequent sludge removal.[4]

Small scale aerobic systems generally use one of two designs, fixed-film systems, or continuous flow, suspended growth aerobic systems (CFSGAS). The pre-treatment and effluent handling are similar for both types of systems, and the difference lies in the aeration stage.[1]

Fixed film systems use a porous medium which provides a bed to support the biomass film that digests the waste material in the wastewater. Designs for fixed film systems vary widely, but fall into two basic categories (though some systems may combine both methods). The first is a system where the media is moved relative to the wastewater, alternately immersing the film and exposing it to air, while the second uses a stationary media, and varies the wastewater flow so the film is alternately submerged and exposed to air. In both cases, the biomass must be exposed to both wastewater and air for the aerobic digestion to occur. The film itself may be made of any suitable porous material, such as formed plastic or peat moss. Simple systems use stationary media, and rely on intermittent, gravity driven wastewater flow to provide periodic exposure to air and wastewater. A common moving media system is the rotating biological contactor (RBC), which uses disks rotating slowly on a horizontal shaft. Approximately 40 percent of the disks are submerged at any given time, and the shaft rotates at a rate of one or two revolutions per minute.[1]

CFSGAS systems, as the name implies, are designed to handle continuous flow, and do not provide a bed for a bacterial film, relying rather on bacteria suspended in the wastewater. The suspension and aeration are typically provided by an air pump, which pumps air through the aeration chamber, providing a constant stirring of the wastewater in addition to the oxygenation. A medium to promote fixed film bacterial growth may be added to some systems designed to handle higher than normal levels of biomass in the wastewater.[1]

Another increasingly common use of aerobic treatment is for the remediation of failing or failed anaerobic septic systems, by retrofitting an existing system with an aerobic feature. This class of product, known as aerobic remediation, is designed to remediate biologically failed and failing anaerobic distribution systems by significantly reducing the biochemical oxygen demand (BOD5) and total suspended solids (TSS) of the effluent. The reduction of the BOD5 and TSS reverses the developed bio-mat. Further, effluent with high dissolved oxygen and aerobic bacteria flow to the distribution component and digest the bio-mat.Doing so on single tank systems where solids do not have anywhere to settle, or there is no a clarifying area can do damage to the field lines as the solid matter is stirred up in the tank.

Composting toilets are designed to treat only toilet waste, rather than general residential waste water, and are typically used with water-free toilets rather than the flush toilets associated with the above types of aerobic treatment systems. These systems treat the waste as a moist solid, rather than in liquid suspension, and therefore separate urine from feces during treatment to maintain the correct moisture content in the system. An example of a composting toilet is the clivus multrum (Latin for 'inclined chamber'), which consists of an inclined chamber that separates urine and feces and a fan to provide positive ventilation and prevent odors from escaping through the toilet. Within the chamber, the urine and feces are independently broken down not only by aerobic bacteria, but also by fungi, arthropods, and earthworms. Treatment times are very long, with a minimum time between removals of solid waste of a year; during treatment the volume of the solid waste is decreased by 90 percent, with most being converted into water vapor and carbon dioxide. Pathogens are eliminated from the waste by the long durations in inhospitable conditions in the treatment chamber.[5]

The aeration stage and the disinfecting stage are the primary differences from a traditional septic system; in fact, an aerobic treatment system can be used as a secondary treatment for septic tank effluent.[1] These stages increase the initial cost of the aerobic system, and also the maintenance requirements over the passive septic system. Unlike many other biofilters, aerobic treatment systems require a constant supply of electricity to drive the air pump increasing overall system costs. The disinfectant tablets must be periodically replaced, as well as the electrical components (air compressor) and mechanical components (air diffusers). On the positive side, an aerobic system produces a higher quality effluent than a septic tank, and thus the leach field can be smaller than that of a conventional septic system, and the output can be discharged in areas too environmentally sensitive for septic system output. Some aerobic systems recycle the effluent through a sprinkler system, using it to water the lawn where regulations approve.

Since the effluent from an ATS is often discharged onto the surface of the leach field, the quality is very important. A typical ATS will, when operating correctly, produce an effluent with less than 30 mg/liter BOD5, 25 mg/L TSS, and 10,000 cfu/mL fecal coliform bacteria. This is clean enough that it cannot support a biomat or "slime" layer like a septic tank.[6]

ATS effluent is relatively odorless; a properly operating system will produce effluent that smells musty, but not like sewage. Aerobic treatment is so effective at reducing odors, that it is the preferred method for reducing odor from manure produced by farms.[7][8][9]

So, these are a few precautions that you may want to take if you are going to work on a septic tank system. This is important should you want to keep you and your family safe around the system. When in doubt, it’s a good idea to call a local septic service in St Leo . Hopefully, these tips will help.

SEPTIC TANK CARE | WHO TO CALL FOR SERVICE IN St Leo

There are multiple costs associated with a Septic System. I'll start with an explanation of the costs and give the actual estimates at the bottom:

Explanation of Septic Costs:

Cost to Pump Out the Septic Tank: Homeowners should have a licensed septic contractor pump out their septic tank every 3 to 5 years. If the tank is never pumped, then grease and other particles will flow into the leach field and clog the distribution pipes and the surrounding soil. Once that happens, he will need to have a new leach field installed at a cost of $10,000+.

Listing of Estimated Septic Costs:

Cost to Pump Out the Septic Tank: $150 to $250

Cost of Septic System Testing with Dye: $75 to $125

Cost to Remove Clog in Pipes to Tank: $50 to $250 (or more, if it's serious)

Cost of Complete Visual Inspection: $300 to $600


Pasco County Sewage Tank Cleaning Company

Home